Part Number Hot Search : 
74LVC86 6051K1 H3545 50032 AE10737 6051K1 2SK31 50032
Product Description
Full Text Search
 

To Download SI8441-B-IS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Si8440/1/2
QUAD -C H A N N E L DIGITAL I S O L A T O R
Features
High-speed operation: DC - 150 Mbps Low propagation delay: <10 ns Wide Operating Supply Voltage: 2.375-5.5 V Low power: I1 + I2 < 12 mA/channel at 100 Mbps Precise timing: 2 ns pulse width distortion 1 ns channel-channel matching 2 ns pulse width skew 2500 VRMS isolation Transient Immunity: >25 kV/s Tri-state outputs with ENABLE control DC correct No start-up initialization required <10 s Startup Time High temperature operation: 125 C at 100 Mbps 100 C at 150 Mbps Wide body SOIC-16 package Pin Assignments
Wide Body SOIC
VDD1 GND1 A1 A2 A3 A4 EN1 GND1
1 2 3 4 5 6 7 8
Top View
16 15 14 13 12 11 10 9
VDD2 GND2 B1 B2 B3 B4 EN2 GND2
Applications
Isolated switch mode supplies Isolated ADC, DAC Motor control Power factor correction systems
Safety Regulatory Approvals
UL recognition:2500 VRMS for 1 Minute per UL1577 CSA component acceptance notice #5A * All Pending VDE certification conformity
DIN EN 60747-5-2 (VDE0884 Part 2):2003-01 DIN EN60950(VDE0805): 2001-12;EN60950:2000 VIORM = 560 VPEAK
Description
Silicon Lab's family of digital isolators are CMOS devices that employ an RF coupler to transmit digital information across an isolation barrier. Very high speed operation at low power levels is achieved. These parts are available in a 16-pin wide body SOIC package. Three speed grade options (1, 10, 100 Mbps) are available and achieve typical propagation delay of less than 10 ns.
Block Diagram
Si8440 Si8441 Si8442
A1 A2 A3 A4 NC
B1 B2 B3 B4 EN2
A1 A2 A3 A4 EN1
B1 B2 B3 B4 EN2
A1 A2 A3 A4 EN1
B1 B2 B3 B4 EN2
Rev. 0.3 4/06
Copyright (c) 2006 by Silicon Laboratories
Si8440/1/2
Si8440/1/2
2
Rev. 0.3
Si8440/1/2 TABLE O F CONTENTS
Section Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1. Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2. Input and Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3. Enable Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 4.4. RF Immunity and Common Mode Transient Immunity . . . . . . . . . . . . . . . . . . . . . . . 17 4.5. RF Radiated Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7. Package Outline: Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Rev. 0.3
3
Si8440/1/2
1. Electrical Specifications
Table 1. Electrical Characteristics
(VDD1 = 5 V, VDD2 = 5 V, TA = -40 to 125 C)
Parameter High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Leakage Current Enable Input High Current Enable Input Low Current Si8440-A,-B,-C, VDD1 Si8440-A,-B,-C, VDD2 Si8440-A,-B,-C, VDD1 Si8440-A,-B,-C, VDD2 Si8441-A,-B,-C, VDD1 Si8441-A,-B,-C, VDD2 Si8441-A,-B,-C, VDD1 Si8441-A,-B,-C, VDD2 Si8442-A,-B,-C, VDD1 Si8442-A,-B,-C, VDD2 Si8442-A,-B,-C, VDD1 Si8442-A,-B,-C, VDD2 Si8440-B,-C, VDD1 Si8440-B,-C, VDD2 Si8441-B,-C, VDD1 Si8441-B,-C, VDD2 Si8442-B,-C, VDD1 Si8442-B,-C, VDD2 Si8440-C, VDD1 Si8440-C, VDD2 Si8441-C, VDD1 Si8441-C, VDD2 Si8442-C, VDD1 Si8442-C, VDD2
4
Symbol VIH VIL VOH VOL IL IENH IENL
Test Condition
Min 2.0 --
Typ -- -- 4.8 0.2 -- 4 20 7.5 7 15 6.5 8.7 11 14 12.5 10 10 13 13 11 9 12 13.5 12.5 12.5 12 27 16 27 21 21
Max -- 0.8 -- 0.4 10 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Unit V V V V A A A mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA
loh = -4 mA lol = 4 mA VENx = VIH VENx = VIL All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC
VDD1,VDD2 - 0.4 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
DC Supply Current (All inputs 0 V or at Supply)
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Rev. 0.3
Si8440/1/2
Table 1. Electrical Characteristics (Continued)
(VDD1 = 5 V, VDD2 = 5 V, TA = -40 to 125 C)
Parameter Maximum Data Rate Minimum Pulse Width Propagation Delay
1
Symbol
Test Condition Timing Characteristics
Min 0 --
Typ -- 5 7.5 1 6 0.5 2 2 30 30 5 5 3
Max 100 -- -- -- -- -- -- -- -- -- -- -- --
Unit Mbps ns ns ns ns ns ns ns kV/s kV/s ns ns s
tPHL, tPLH PWD tPSK tPSKCD/OD C1 = 15 pF C1 = 15 pF CML CMH ten1 ten2 tSU
-- -- -- -- -- -- 25 25 -- -- --
Propagation Delay Skew2 Channel-Channel Skew Output Rise Time Output Fall Time Common Mode Transient Immunity at Logic Low Output4 Common Mode Transient Immunity at Logic High Output4 Enable to Data Valid Enable to Data Tri-State Start-up Time
5 3
Pulse Width Distortion |tPLH - tPHL|1
Notes: 1. tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal. 2. tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. 3. Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier. 4. CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed. 5. Start-up time is the time period from the application of power to valid data at the output.
ENABLE
INPUT (V IX) tPLH tPHL
50%
OUTPUTS
OUTPUT (V OX)
ten1 ten2
50%
Figure 1. ENABLE Timing Diagram
Figure 2. Propagation Delay Timing
Rev. 0.3
5
Si8440/1/2
Table 2. Electrical Characteristics
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = -40 to 125 C)
Parameter High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Leakage Current Enable Input High Current Enable Input Low Current Si8440-A,-B,-C, VDD1 Si8440-A,-B,-C, VDD2 Si8440-A,-B,-C, VDD1 Si8440-A,-B,-C, VDD2 Si8441-A,-B,-C, VDD1 Si8441-A,-B,-C, VDD2 Si8441-A,-B,-C, VDD1 Si8441-A,-B,-C, VDD2 Si8442-A,-B,-C, VDD1 Si8442-A,-B,-C, VDD2 Si8442-A,-B,-C, VDD1 Si8442-A,-B,-C, VDD2 Si8440-B,-C, VDD1 Si8440-B,-C, VDD2 Si8441-B,-C, VDD1 Si8441-B,-C, VDD2 Si8442-B,-C, VDD1 Si8442-B,-C, VDD2 Si8440-C, VDD1 Si8440-C, VDD2 Si8441-C, VDD1 Si8441-C, VDD2 Si8442-C, VDD1 Si8442-C, VDD2
Symbol VIH VIL VOH VOL IL IENH IENL
Test Condition
Min 2.0 --
Typ -- -- 3.1 0.2 -- 4 20 7.3 6.5 14.3 6 8.3 10.8 13.3 11.8 9 9 12 12 11 8 11.4 14.5 11.5 11.5 11.4 18 12.5 21 17.5 17.5
Max -- 0.8 -- 0.4 10 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Unit V V V V A A A mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA
loh = -4 mA lol = 4 mA VENx = VIH VENx = VIL All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC
VDD1,VDD2 - 0.4 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
DC Supply Current (All inputs 0 V or at supply)
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
6
Rev. 0.3
Si8440/1/2
Table 2. Electrical Characteristics (Continued)
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = -40 to 125 C)
Parameter Maximum Data Rate Minimum Pulse Width Propagation Delay
1
Symbol
Test Condition
Min 0 --
Typ -- 5 7.5 1 8 1 2 2 30 30 5 5 3
Max 100 -- -- -- -- -- -- -- -- -- -- -- --
Unit Mbps ns ns ns ns ns ns ns kV/s kV/s ns ns s
Timing Characteristics
tPHL,tPLH PWD tPSK tPSKCD/OD C1 = 15 pF C1 = 15 pF CML CMH ten1 ten2 tSU
-- -- -- -- -- -- 25 25 -- -- --
Propagation Delay Skew2 Channel-Channel Skew Output Rise Time Output Fall Time Common Mode Transient Immunity at Logic Low Output4 Common Mode Transient Immunity at Logic High Output4 Enable to Data Valid Enable to Data Tri-State Start-up Time
5 3
Pulse Width Distortion |tPLH - tPHL|1
Notes: 1. tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal. 2. tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. 3. Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier. 4. CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed. 5. Start-up time is the time period from the application of power to valid data at the output.
Rev. 0.3
7
Si8440/1/2
Table 3. Electrical Characteristics
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = -40 to 100 C)
Parameter High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Leakage Current Enable Input High Current Enable Input Low Current Si8440-A,-B,-C, VDD1 Si8440-A,-B,-C, VDD2 Si8440-A,-B,-C, VDD1 Si8440-A,-B,-C, VDD2 Si8441-A,-B,-C, VDD1 Si8441-A,-B,-C, VDD2 Si8441-A,-B,-C, VDD1 Si8441-A,-B,-C, VDD2 Si8442-A,-B,-C, VDD1 Si8442-A,-B,-C, VDD2 Si8442-A,-B,-C, VDD1 Si8442-A,-B,-C, VDD2 Si8440-B,-C, VDD1 Si8440-B,-C, VDD2 Si8441-B,-C, VDD1 Si8441-B,-C, VDD2 Si8442-B,-C, VDD1 Si8442-B,-C, VDD2 Si8440-C, VDD1 Si8440-C, VDD2 Si8441-C, VDD1 Si8441-C, VDD2 Si8442-C, VDD1 Si8442-C, VDD2
Symbol VIH VIL VOH VOL IL IENH IENL
Test Condition
Min 2.0 --
Typ -- -- 2.3 0.2 -- 4 20 6.8 6.3 12.5 5.8 7.8 9.8 12.5 11 8.8 8.5 11.5 11.5 10.2 7 10.5 11.5 11 11 10.8 14.5 12.5 17 15 15
Max -- 0.8 -- 0.4 10 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Unit V V V V A A A mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA
loh = -4 mA lol = 4 mA VENx = VIH VENx = VIL All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC
VDD1,VDD2 - 0.4 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
DC Supply Current (All inputs 0 V or at supply)
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
8
Rev. 0.3
Si8440/1/2
Table 3. Electrical Characteristics (Continued)
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = -40 to 100 C)
Parameter Maximum Data Rate Minimum Pulse Width Propagation Delay
1
Symbol
Test Condition Timing Characteristics
Min 0 --
Typ -- 5 12 1.5 10 1 2 2 30 30 5 5 3
Max 100 -- -- -- -- -- -- -- -- -- -- -- --
Unit Mbps ns ns ns ns ns ns ns kV/s kV/s ns ns s
tPHL,tPLH PWD tPSK tPSKCD/OD C1 = 15 pF C1 = 15 pF CML CMH ten1 ten2 tSU
-- -- -- -- -- -- 25 25 -- -- --
Propagation Delay Skew2 Channel-Channel Skew Output Rise Time Output Fall Time Common Mode Transient Immunity at Logic Low Output4 Common Mode Transient Immunity at Logic High Output4 Enable to Data Valid Enable to Data Tri-State Start-up Time
5 3
Pulse Width Distortion |tPLH - tPHL|1
Notes: 1. tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal. 2. tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. 3. Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier. 4. CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed. 5. Start-up time is the time period from the application of power to valid data at the output.
Rev. 0.3
9
Si8440/1/2
Table 4. Recommended Operating Conditions
Parameter Ambient Operating Temperature* Supply Voltage Symbol TA VDD1 VDD2 Test Condition 100 Mbps, 15 pF, 5 V 150 Mbps, 15 pF, 5 V Min -40 0 2.375 2.375 Typ 25 25 -- -- Max 125 100 5.5 5.5 Unit C C V V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply voltage.
Table 5. Absolute Maximum Ratings
Parameter Storage Temperature Ambient Temperature Under Bias Supply Voltage Input Voltage Output Voltage Output Current Drive Channel Lead Solder Temperature (10s) Maximum Isolation Voltage Symbol TSTG TA VDD1, VDD2 VI VO LO Min -65 -40 -0.5 -0.5 -0.5 -- -- -- Typ -- -- -- -- -- -- -- -- Max 150 125 6 VDD + 0.5 VDD + 0.5 10 260 4000 Unit C C V V V mA C VDC
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Table 6. Package Characteristics
Parameter Resistance Input (Input-Output)1 Capacitance (Input-Output)1 Capacitance2 IC Junction-to-Case Thermal Resistance, Side 1 IC Junction-to-Case Thermal Resistance, Side 2 Symbol RIO CIO CI JCI JCO Thermocouple located at center of package underside f = 1 MHz Test Condition Min -- -- -- -- -- Typ 1012 1.4 4.0 33 28 Max -- -- -- -- -- Unit pF pF C/W C/W
Notes: 1. Device considered a 2-terminal device; Pins 1- 8 shorted together and pins 9-16 shorted together. 2. Input capacitance is from any input data pin to ground.
10
Rev. 0.3
Si8440/1/2
Table 7. Regulatory Information
The Si84xx have been approved by the organizations listed below.
UL1
CSA
VDE2 Certified according to DIN EN 60747-5-2 (VDE 0884 Part 2): 2003012
Recognized under 1577 component Approved under CSA Component recognition program1 Acceptance Notice #5A Basic insulation, 2500 V RMS isolation voltage
Reinforced insulation per CSA Basic insulation, 560 V peak 60950-1-03 and IEC 60950-1, 400 V Complies with DIN EN 60747-5-2 RMS maximum working voltage (VDE 0884 Part 2): 2003-01, DIN EN 60950 (VDE 0805): 2001-12; EN 60950:2000 Reinforced insulation, 560 V peak File 2500035643 File 5006301-4880-0001
File E257455
Notes: 1. In accordance with UL1577, each Si84xx is proof tested by applying an insulation test voltage > 3000 V RMS for 1 second (current leakage detection limit = 5 A). 2. In accordance with DIN EN 60747-5-2, each Si84xx is proof tested by applying an insulation test voltage > 1050 V peak for 1 second (partial discharge detection limit = 5 pC). A "*" mark branded on the component designates DIN EN 60747-5-2 approval.
Table 8. Insulation and Safety-related Specifications
Parameter Rated Dielectric Insulation Voltage Minimum External Air Gap (Clearance) L(IO1) Symbol Test Condition 1 minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body Insulation distance through insulation CTI DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1) Value 2500 7.7 min Unit VRMS mm
Minimum External Tracking (Creepage)
L(IO2)
8.1
mm
Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Basic Isolation Group
0.017 min >175 IIIa
mm V
Rev. 0.3
11
Si8440/1/2
Table 9. DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics1,2
Description Installation Classification per DIN VDE 0110 For Rated Mains Voltages < 150 VRMS For Rated Mains Voltages < 300 VRMS For Rated Mains Voltages < 400 VRMS Climatic Classification Pollution Degree (DIN VDE 0110, Table 1) Maximum Working Insulation Voltage Input to Output Test Voltage, Method b1 (VIORM x 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC) Input to Output Test Voltage, Method a After Environmental Tests Subgroup 1 (VIORM x 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC) After Input and/or Safety Test Subgroup 2/3 (VIORM x 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC) Highest Allowable Overvoltage (Transient Overvoltage, tTR = 10 sec) Safety-Limiting Values (Maximum value allowed in the event of a failure; also see the thermal derating curve, Figure 3) Case Temperature Side 1 Current Side 2 Current Insulation Resistance at TS, VIO = 500 V VIORM VPR Symbol Characteristic I-IV I-III I-II 40/125/21 2 560 1050 VPEAK VPEAK Unit
VPR
896 672
VPEAK VPEAK VPEAK
VTR
4000
TS IS1 IS2 RS
150 265 335 >109
C mA mA
Notes: 1. This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. 2. The * marking on packages denotes DIN EN 60747-5-2 approval for 560 V peak working voltage.
350
300
Safety-Limiting Current (mA)
250 SIDE #2 200
150 SIDE #1 100
50
0 0 50 100 Case Temperature (C) 150 200
Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2
12
Rev. 0.3
Si8440/1/2
2. Typical Performance Characteristics
15 13 Current (mA) 11 3.3V 9 2.5V 7 5 0 10 20 30 40 50 60 70 80 90 100 Data Rate (Mbps) 5V
20 18 Current (mA) 16 14 12 10 0 10 20 30 40 50 60 70 80 90 100 Data Rate (Mbps) 3.3V 5V
2.5V
Figure 4. Si8440 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Operation
30 5V 25 Current (mA) 20 15 10 5 0 10 20 30 40 50 60 70 80 90 100 Data Rate (Mbps) 2.5V 3.3V
Figure 6. Si8441 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Operation
30 5V 25 Current (mA) 3.3V 20 15 10 5 0 10 20 30 40 50 60 70 80 90 100 Data Rate (Mbps) 2.5V
Figure 5. Si8440 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Operation (15 pF Load)
Figure 7. Si8441 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Operation (15 pF Load)
30 25 Current (mA) 20 15 2.5V 10 5 0 10 20 30 40 50 60 70 80 90 100 Data Rate (Mbps) 5V 3.3V
Figure 8. Si8442 Typical VDD1 or VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.5 V Operation (15 pF Load)
Rev. 0.3
13
Si8440/1/2
10 9 Delay (ns) 8 Falling Edge 7 6 5 -40 -20 0 20 40 60 80 100 120 Temperature (Degrees C) Rising Edge
Figure 9. Propagation Delay vs. Temperature 5 V Operation
10 9 Delay (ns) 8 7 6 5 -40 -20 0 20 40 60 80 100 120 Temperature (Degrees C) Falling Edge Rising Edge
Figure 10. Propagation Delay vs. Temperature 3.3 V Operation
15 13 Delay (ns) 11 9 7 5 -40 -20 0 20 40 60 80 100 120 Temperature (Degrees C) Falling Edge Rising Edge
Figure 11. Propagation Delay vs. Temperature 2.5 V Operation
14
Rev. 0.3
Si8440/1/2
3. Application Information
3.1. Theory of Operation
The operation of an Si8440 channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si8440 channel is shown in Figure 12. A channel consists of an RF transmitter and receiver separated by a transformer. Referring to the transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying and applies the resulting waveform to the primary of the transformer. The receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver.
3.2. Eye Diagram
Figure 13 illustrates an eye-diagram taken on an Si8440-IS. The test used an Anritsu (MP1763C) Pulse Pattern Generator for the data source. The output of the generator's clock and data from an Si8440-IS were captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that very low pulse width distortion and very little jitter were exhibited.
TRANSMITTER
RF OSCILLATOR
RECEIVER
A
MODULATOR
DEMODULATOR
B
Figure 12. Simplified Channel Diagram
Figure 13. Eye Diagram
Rev. 0.3
15
Si8440/1/2
4. Layout Recommendations
Dielectric isolation is a set of specifications produced by the safety regulatory agencies from around the world that describes the physical construction of electrical equipment that derives power from a high-voltage power system such as 100-240 VAC systems or industrial power systems. The dielectric test (or HIPOT test) given in the safety specifications places a very high voltage between the input power pins of a product and the user circuits and the user touchable surfaces of the product. For the IEC relating to products deriving their power from the 220-240 V power grids, the test voltage is 2500 VAC (or 3750 VDC--the peak equivalent voltage). There are two specifications: terms described in the safety
4.1. Supply Bypass
The Si8440 requires a 0.1 F bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed as close as possible to the package.
4.2. Input and Output Characteristics
The Si8440 inputs and outputs are standard CMOS drivers/receivers.
4.3. Enable Inputs
The receiver output drivers are enabled when the Enable input is high and the drivers remain in a highimpedance state when Enable is low. The Enable input can be used for multiplexing or as a clock sync input. Supply currents remain at their nominal values when Enable is low. The Enable inputs must be tied to a logic level.
Creepage--the distance along the insulating surface an arc may travel. Clearance--the distance through the shortest path through air that an arc may travel. Figure 14 illustrates the accepted method of providing the proper creepage distance along the surface. For a 220-240 V application, this distance is 8 mm and the wide body SOIC package must be used. There must be no copper traces within this 8 mm exclusion area, and the surface should have a conformal coating such as solder resist. The digital isolator chip must straddle this exclusion area.
Figure 14. Creepage Distance
16
Rev. 0.3
Si8440/1/2
4.4. RF Immunity and Common Mode Transient Immunity
The Si8440 family has very high common mode transient immunity while transmitting data. This is typically measured by applying a square pulse with very fast rise/fall times between the isolated grounds. Measurements show no failures up to 30 kV/s. During a high surge event the output may glitch low for up to 20-30 ns, but the output corrects immediately after the surge event. The Si844x family passes the industrial requirements of CISPR24 for RF immunity of 3 V/m using an unshielded evaluation board. As shown in Figure 15, the isolated ground planes form a parasitic dipole antenna, while Figure 16 shows the RMS common mode voltage versus frequency above which the Si844x becomes susceptible to data corruption. To avoid compromising data, care must be taken to keep RF common-mode voltage below the envelope specified in Figure 16. The PCB should be laid-out to not act as an efficient antenna for the RF frequency of interest. RF susceptibility is also significantly reduced when the end system is housed in a metal enclosure, or otherwise shielded.
GND1
Isolator
GND2
Dipole Antenna
Figure 15. Dipole Antenna
5 RMS Voltage (V) 4 3 2 1 0 500
1000 Frequency (MHz)
1500
2000
Figure 16. RMS Common Mode Voltage vs. Frequency
Rev. 0.3
17
Si8440/1/2
4.5. RF Radiated Emissions
The Si8440 family uses a RF carrier frequency of approximately 2.1 GHz. This will result in a small amount of radiated emissions at this frequency and its harmonics. The radiation is not from the IC chip but due to a small amount of RF energy driving the isolated ground planes which can act as a dipole antenna. The unshielded Si8440 evaluation board passes FCC requirements. Table 10 shows measured emissions compared to FCC requirements. Radiated emissions can be reduced if the circuit board is enclosed in a shielded enclosure or if the PCB is a less efficient antenna.
Table 10. Radiated Emissions
Frequency (GHz) 2.094 2.168 4.210 4.337 6.315 6.505 8.672 Measured (dBV/m) 70.0 68.3 61.9 60.7 58.3 60.7 45.6 FCC Spec (dBV/m) 74.0 74.0 74.0 74.0 74.0 74.0 74.0 Compared to Spec (dB) -4.0 -5.7 -12.1 -13.3 -15.7 -13.3 -28.4
18
Rev. 0.3
Si8440/1/2
5. Pin Descriptions
VDD1 GND1 A1 A2 A3 A4 EN1 GND1
1 2 3 4 5 6 7 8
Top View
16 15 14 13 12 11 10 9
VDD2 GND2 B1 B2 B3 B4 EN2 GND2
Wide Body SOIC
Name VDD1 GND1 A1 A2 A3 A4 EN1 GND1 GND2 EN2 B4 B3 B2 B1 GND2 VDD2 SOIC-16 Pin# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Type Supply Ground Digital Input Digital Input Digital I/O Digital I/O Digital Input Ground Ground Digital Input Digital I/O Digital I/O Digital Output Digital Output Ground Supply Description Side 1 power supply. Side 1 ground. Side 1 digital input. Side 1 digital input. Side 1 digital input or output. Side 1 digital input or output. Side 1 active high enable. NC on Si8440. Side 1 ground. Side 2 ground. Side 2 active high enable. Side 2 digital input or output. Side 2 digital input or output. Side 2 digital output. Side 2 digital output. Side 2 ground. Side 2 power supply.
Rev. 0.3
19
Si8440/1/2
6. Ordering Guide
Ordering Part Number Si8440-A-IS Si8440-B-IS Si8440-C-IS Si8441-A-IS SI8441-B-IS Si8441-C-IS Si8442-A-IS Si8442-B-IS Si8442-C-IS Number of Inputs VDD1 Side 4 4 4 3 3 3 2 2 2 Number of Inputs Maximum Data VDD2 Side Rate 0 0 0 1 1 1 2 2 2 1 10 100 1 10 100 1 10 100 Temperature Package Type SOIC-16 SOIC-16 SOIC-16 SOIC-16 SOIC-16 SOIC-16 SOIC-16 SOIC-16 SOIC-16
-40 to 125 C -40 to 125 C -40 to 125 C -40 to 125 C -40 to 125 C -40 to 125 C -40 to 125 C -40 to 125 C -40 to 125 C
Note: All packages are Pb-free and RoHS compliant. Moisture sensitivity level is MSL2 with peak reflow temperature of 260 C according to the JEDEC industry standard classifications, and peak solder temperature.
20
Rev. 0.3
Si8440/1/2
7. Package Outline: Wide Body SOIC
Figure 17 illustrates the package details for the Quad-Channel Digital Isolator. Table 14 lists the values for the dimensions shown in the illustration.
Figure 17. 16-Pin Wide Body SOIC Table 14. Package Diagram Dimensions
Millimeters Symbol A A1 D E E1 b c e h L Min -- 0.1 Max 2.65 0.3
10.3 BSC 10.3 BSC 7.5 BSC 0.31 0.20 0.25 0.4 0 0.51 0.33 0.75 1.27 7
1.27 BSC
Rev. 0.3
21
Si8440/1/2
DOCUMENT CHANGE LIST
Revision 0.2 to Revision 0.3
Added enable high and low typical current specifications to Tables 1, 2, and 3. Added startup time specifications (with note 5) to Tables 1, 2, and 3. Rewrote paragraph 1 in section "4.4. RF Immunity and Common Mode Transient Immunity" on page 17 to reflect 30 kV/s transient immunity capability.
22
Rev. 0.3
Si8440/1/2
NOTES:
Rev. 0.3
23
Si8440/1/2
CONTACT INFORMATION
Silicon Laboratories Inc. 4635 Boston Lane Austin, TX 78735 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Email: MCUinfo@silabs.com Internet: www.silabs.com
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
24
Rev. 0.3


▲Up To Search▲   

 
Price & Availability of SI8441-B-IS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X